Vyhledávání problémů v budovách za použití infračervených kamer |
Sobota, 13. září 2008 |
Od poškození vichřicí po každodenní úniky ve vodoinstalacích či střechách, mohou být škody způsobené vlhkostí v obytných a komerčních budovách velmi nákladné. Nejdůležitější je identifikovat a vystopovat problémy s vlhkostí před tím, než způsobí větší následné škody. Lokalizováním teplotních změn pocházejících z vlhko-odpařovacího ochlazování (EMC) pocházejícího ze zdi, koberce, stropních kazet atd. může technik zmapovat na vlhkost kompletní budovu a separovat problémy před návrhem opravných opatření. Jak to fungujeInfračervená kamera dokáže odhalit zadrženou vlhkost i pod několika vrstvami materiálů bez jakýchkoliv vnějších příznaků na povrchu, i když je povrch úplně suchý a pokrytý barvou, podlahovou krytinou nebo jiným materiálem. Nicméně, infračervená kamera není vlhkoměr a ani „nevidí“ vlhkost. Teplotní diference způsobené vlhko-odpařovacím ochlazováním na daném povrchu vytváří jedinečné teplotní vzory, které se dají vyhledat citlivou termokameru. Toto odpařované vlhko ochlazuje povrch materiálu a vytváří termální odchylku nízké teploty v porovnání s okolními suchými materiály. Tento odpařovací efekt se vztahuje primárně na kontroly interiérů, ve kterých se kontroluje teplota a jiné hodnoty. Výjimky se vztahují na určité typy střešních systémů, u kterých vlhký materiál ve stropě vytváří teplejší teplotní vzor tím, jak slunce zahřívá vlhko zachycené ve střešních materiálech. Tipy na přesná měřeníPřestože interiéry v budovách jsou obvykle regulovaná prostředí, musí kontrolní technik stále počítat s několika faktory. Teplota vzduchuStudený a teplý vzduch může vytvářet jak chybná pozitiva, tak chybná negativa. Teplý přicházející vzduch může překrýt vlhké materiály tím, že zahřeje povrch a tak zkreslí nebo potlačí teplotní vzor vytvořený odpařováním. Oproti tomu studený vzduch vycházející z klimatizace může vytvořit teplotní vzor podobný vzoru problému s vlhkostí, a tím se vytvoří chybné pozitivum. Po dobu vysoušení vlhkosti vytvářejí vysoušecí zařízení uvnitř struktury ohromné množství tepla. Četné ventilátory směrují velký objem teplého vzduchu rychlým prouděním na vlhké plochy, čímž zvyšují možnost vzniku chybného negativa. Teplý vzduch z ventilátorů může překrýt chladnější vzor vytvořený vlhko-odpařovacím ochlazováním, čím může vytvořit uživateli dojem, že je materiál suchý. A třebaže okolní vzduch sám o sobě nepříznivě neovlivňuje teplotní vzor vysychání, umístění a spuštění vysoušecího zařízení vliv mít může. IzolaceChybějící nebo poškozená izolace zdí může překrýt teplotní vzory, vytvářet jak chybná pozitiva tak i chybná negativa. Chybějící izolace ve zdi může během teplého slunného dne způsobit, že materiál a vnitřní vlhkost v dutinách zdi přeroste bod, za kterým se teplotní vzor potlačí nebo zkreslí. Oproti tomu, během chladného dne může chybějící izolace vytvořit chladnější teplotní vzor, který je podobný vzoru vlhkého materiálu. V obou případech musí být přítomnost vlhkosti ověřena vlhkoměrem. Keramické obkladyVětšina interiérových stavebních materiálů má vysoké hodnoty emisivity (vyzařování teploty), čímž se stávají velmi příhodné pro teplotní snímání termokameru. Nicméně, vyhledání vlhkosti pod keramickým obkladem a určitými dalšími podlahovými a obkladovými krytinami, může být obtížné. Protože se vlhkost ve většině případů nachází vlastně v podkladové vrstvě podlahy a ne v obkladu samotném, nemusí se teplotní změny vlhkého podkladu přenést přes povrch obkladu podlahy. Nechtěné odrazy ztěžují věci zkreslováním skutečného teplotního vzoru. Okna, obvodový plášť a exteriéryPři kontrole průniků vnější vlhkosti okny, obvodovým pláštěm a jinými exteriérovými částmi do budovy, může trvat hodinu i více než se vlhkost teplotního vzoru v interiéru projeví. U jednoho případu se technici domnívali, že místem průniku bylo místo nad oknem v obývacím pokoji. Venkovní zeď postříkali vodou dle normy ASTM. Po 20 minutách se neprojevil žádný příznak vlhkosti na vnitřní zdi ani na podlaze. Vnější zeď byla tedy dalších 10 minut skrápěna a přesto se uvnitř neprojevoval žádný teplotní vzor. Teprve až téměř za hodinu po první zkoušce postříkáním začal z vnější vlhké fasády a izolace vystupovat v interiéru teplotní vzor. Třebaže vlhkost pronikla vnější fasádou během několika minut po první zkoušce postříkáním, trvalo to téměř hodinu, než teploty z odpařovacího ochlazování pronikly na povrch zdi do interiéru. Pozorujeme teplotní proměny vlhka na sucho od jemných o 0,3°C až po větší než 5,5°C. Během vysoušení budovy se bude teplotní rozdíl mezi vlhkým a suchým materiálem pohybovat nahoru a dolů v závislosti na teplotě prostředí v budově a obsahu vlhkosti v materiálu. Povětšinou jsou teplotní rozdíly větší během prvních 24 až 36 hodin. ZávěrFinanční dopad neodhalených problémů pocházejících z vlhkosti v budovách je ohromný a tyto problémy jsou stále četnější. Zatímco vlhkoměry budou neustále poskytovat konečná ověření vlhkých a suchých materiálů, potřeba vyhledávání vlhkosti v budovách přesně a efektivně je stále problémem. S použitím infračervené technologie, mohou technici správy budov, servisní firmy a opraváři snížit riziko a dobu kontrol a potenciálně zvýšit svou efektivitu podnikání. Třebaže to ještě není „vše-řešící“ přístroj, jsou infračervené kamery bezpochyby mocným kontrolním nástrojem. Užitečné nástroje a pomůcky pro provádění testy vlhkosti:
Pro více informací navštivte www.fluke.cz |